
A Comparison of some Connectionist Compression Schemes

T. D. Gedeon, J.A. Catalan and J. Jin

Department of Information Engineering
School of Computer Science & Engineering

The University of New South Wales
Sydney NSW 2052 AUSTRALIA

E-mail: tom@cse.unsw.edu.au
Facsimile: +6R 2 9385 5995

Abstract - In this paper we consider connectionist
compression schemes using auto-associative networks, and
demonstrate the advantages gained by imposing two
different constraints on the allowed network weights, and
comparison with pruning of the unconstrained auto-
associative network.

I. INTRODUCTION

Most applications of neural networks; for image
compression have emphasised the degree of compression [1-
31. In many applications the main consideration is the
decompressed image quality [4]. We can guarantee a
consistent level of functionality of units in the compression
layer based on their distinctiveness, and can progressively
reduce the size of the compression layer for the desired level
of image quality [5].

Pruning of redundant or less important hidden neurons
from the popular back-propagation trained neural networks
is useful for a host of reasons. For pruning it is necessary to
identify hidden neurons with similar functionality. We have
used a pruning process based on the behaviour of the
hidden neurons in an image processing application to
produce a quality driven compression by elilminating the
least different hidden neurons. It is also possible to use the
computationally cheaper alternative using only the trained
weight matrix of the neural networks at each stage of the
compression process [6-71.

In this paper we demonstrate the advantages for
generalisation performance of constraining weights
symmetrically using weight sharing, and by constraining
functional symmetry by the use of enhanced back-
propagation networks trained bidirectionally [8 -91.

11. PRUNING

The seminal work on pruning trained netwoirks [IO] uses
the outputs of units in a two stage pruning process. In the
first stage, units whose inputs are always close to zero are
removed. The outputs of the other units are banded to 0 or
1. The pattern of outputs are compared, and any that are
duplicates or inverses by inspection are removed, and the
network undergo further training to restore the solution. In
the second stage of pruning, unit outputs are again
inspected for redundancy with regards to the separation of

classes within the presented pattern space. Also, entire
layers are examined for the number of classes being coded,
and compared with the inumber of classes needed at the next
layer. The example giiven allows the entire layer to be
removed. The resultinig overall network can be trained
further to again retrievt: the solution, but can not learn it if
restarted in this topology.

Such pruning by inspection is quite difficult even on
small examples, so clearly some automatable process
would be ideal. A number of workers have made attempts
in this direction, and have delineated various properties to
determine which uniis can or should be eliminated.
Properties such as relevance [1 1 - 121, contribution [131,
sensitivity [141, badness [151, and distinctiveness [161 have
been described in detail elsewhere. We will briefly describe
distinctiveness here.

The distinctiveness of hidden units is determined from
the unit output activation vector over the pattern
presentation set [16]. That is, for each hidden unit we
construct a vector of the same dimensionality as the number
of patterns in the training set, each component of the vector
corresponding to the output activation of the unit. This
vector represents the functionality of the hidden unit in
(input) pattern space. In this model, vectors for clone units
would be identical irrespective of the relative magnitudes of
their outputs and be recognised. Units with short activation
vectors in pattern space are recognised as insignificant and
can be removed.

Recognising similar pairs of vectors is by calculation of
the angle between them in pattern space. As all activations
are constrained to the: range 0 to 1, the vectors are
normalised to 0.5, 0.5 to use the angular range of 0-180"
rather than 0-90". Angular separations of up to about 15"
are considered too similar and one of them is removed. The
weight vector of the the unit which is removed is added to
the weight vector of the unit which remains. With low
angular separations as above, the averaging effect is
insignificant and the mapping from weights to pattern space
remains adequate in that the error measure is little worse
subsequently. This produces a network with one fewer unit
which requires little further training.

A further category of undesirable units is also discovered
and included in the distinctiveness analysis. Groups of
three or more units whiclh together have no effect, or two or
more units with a constant effect can be recognised. That is,

283

in the pattern space, the sum of their vectors is zero or
constant. The discovery of such groups is done by a sorted
Gaussian vector pivot on the cumulative rectangular matrix
of pattern space vectors. Fortunately, such groups are not
common in our experience, and this part of distinctiveness
analysis was not used in this paper.

111. IMAGE COMPRESSION PREVIOUS WORK

A 64 by 64 reduced greyscale image was chosen for our
method. The image was broken into 16 non-overlapping 16
by 16 patches froming separate training pattems, so as to
allow for generalisation to have clearly occurred - since
there is little obvious similarity between the pieces, and
particularly the large areas of white space around the edges
of the image could be expected to interfere. This allowed a
single image to be used, thus simplifying the discussion.

The network architecture was a 256 input, x unit hidden
layer, and 256 output network, each of the pixels in the 16
by 16 parts of the image being a single input, and output.
The number of bits per pixel were mapped onto the range 0
to 1 as input, and outputs remapped to the gray scale.

The significance of training an auto-associative network
for image compression is that the hidden neurons learn a
compressed representation for the input patterns. For
transmission over a slow network connection, the neural
network weights could be transmitted as a fixed initial cost,
while subsequently the compressed representation formed
by the hidden units could be transmitted using the
activation values of the hidden units for the particular
image. All neural compression is inherently lossy, hence
interest in such work is largely for insights into image
compression and into neural networks that can ensue.

Fig. I . Units vs. image quality, unit significance

Fig. 1 shows the relationship between the number of
hidden units and the total sum of squares error measure
which can be taken as a rough indicator of the image
quality. Initially there is little drop in quality as units are
removed. Beyond a certain point each further unit removed

produces a significant degradation in quality. Fig. 1 also
shows the relationship between the number of hidden units
and the smallest angle between hidden units. These values
are all much higher than the standard 15" we use. It is
interesting to note that the removal of the first few units in
the vicinity of 60" does not cause a marked reduction in the
error measure. Since we are removing significant units at
each stage, the network will require retraining. After the
removal of a unit, the network is retrained briefly. All such
training uses stochastic (pattern) updating of the weights.

IV. SHARED WEIGHT TOPOLOGY

The topology of the shared weight auto-associative
network appears the same as the standard feed-forward
network, though the meaning of the weighted connections
between units. The connection between input A and hidden
unit B in Fig. 2 is the same weight as between hidden unit
B and output C. That is, the number of free parameters is
no longer the same as the number of weights.

The simplest implementation of shared weights in a
simulator is to back-propagate errors and update weights as
in standard backpropagation without weight sharing, and
then after the values of the A-B weight and B-C weight
have diverged to average their values. This has the
unfortunate effect of increasing the computation time
required, but is much clearer conceptually than the
altematives, and was the approach we followed.

The significance of the weight sharing is that the space of
possible network weight configurations is very much
reduced or constrained. In a standard auto-associative
network such as described in the previous section, the first
layer of weights from the inputs to the hidden units can be
seen as implementing a compression function on the input
pattern. The second layer of weights from the hidden units
to the outputs implement a decompression function on the
compressed image. That is, the hidden unit activations are
mapped to recreate an approximation of the original image.
(It is only an approximation, because as indicated above,
neural compression of the nature we do here is inherently
lossy.)

In a shared weight network, the constraining of input to
hidden and hidden to output weights to be identical is to
effectively require that the compression function be
invertible. This has two consequences. Firstly, it may
make finding a compression-decompression function harder
for a particular case. Secondly, if an appropriate function can
be found, we would expect it to perform better in general
than a standard backpropagation network in that the inverse
function is 'the' inverse function, rather than an
approxiination of the inverse function.

In a standard backpropagation network, the first layer of
weights may implement a non-invertible compression
function. Then, the second layer could only implement
some approximation to the ideal decompression function
which does not exist if the compression function was non-
invertible.

284

V. BIDIRECTIONAL NEURAL NETWORKS

To introduce bidirectional neural networks [SI, we must
first restate the directionality implicit in the weights in
feed-forward neural networks trained using error back-
propagation. The weighted links in these networks are from
inputs to hidden, towards the outputs only. (Altematively,
we could view the weights as bidirectional, with different
weights in both directions, with the weights in the reverse
direction being all zeros.) Some (recurrent) models allow
weighted links back to units closer to the inputs, however,
the direction of flow on activation along the vveighted links
is still maintained. Such recurrent connections can be
modelled by more complex topologies with shared
weights, which do not even require such connections to
earlier parts of the network, by making the link implicit.
As a philosophical comment, note that the errors are
propagated backward through the structure though there are
no visible structures for this flow of information to take
place.

Fig. 2. Bidir. topology showing input / output biases

The practical motivation for the development of this
bidirectional model was the recognition that is many
situations using a neural network to form a mapping from
inputs to outputs is only the first step in a wider process,
where the intention is to ask questions such as “given
these socio-economic indicators predict a certain GDP
values, what modifications of the inputs will produce a
higher GDP?” [171.

Fig. 2 illustrates the topology of the network for a
bidirectional neural network. The diagram de-emphasises
the auto-associative nature of the topology in favour of

illustrating the modific:ations required to alllow bidirectional
training.

The weights are all now bidirectional and have the same
value in both directions. The hidden units are fine as they
are, as we allow the bias weights to be used in both
directions. The input neurons require a new set of bias
weights for use only in the reverse direction.

The network is trained using the error-back-propagation
algorithm in one direction at a time. We start in the
forward direction and train nonnally. That is, the training
pattems are used so th,at the input values are applied to the
input units, values propagated towards the output, and the
target values are compared to the actual outputs and the
differences used to mlodify the weights, with these errors
being propagated backwards towards the inputs to
potentially modify all the weights. The test patterns are
used similarly, with the input values being applied to the
input units, and the tairget values compared to the actual
values, though without modifying the weights in the
network.

After some number of training events, the direction is
reversed. The output neurons are used as inputs. That is,
the same patterns from the training data set are used, but
this time the ‘target’ values are applied to the ‘output’
units, and values propagated towards the ‘input’ units. The
actual values produced by the ‘input’ units are compared to
the desired values of .the inputs in the training pattern to
derive an error value which is used to modify weights. This
error is propagated backwards (in this case towards the
‘output’ units) potentiailly modifying all the weights.

The mapping in this; image compression experiment is
clearly a one-to-one identity mapping. This allows us to
avoid discussion of the different sizes of training sets that
are ideal for each direction of training, as the input and
output dimensions are the same. A simple implementation
of bidirectional training for the auto-associative case is to
regularly swap the w’eights connecting the input to the
hidden units with the weights connecting the hidden to the
output units. Many siinulators even provide zero valued
place holders for input unit biases, which serve as a handy
storage location for thle bias weights for the direction not
being trained at thle time. Clearly we do not need to modify
the training or test pattern data files, as the input and target
values are identical in an auto-associative task.

VI. EXPERIMENT DESCRIPTION

This experiment is to compare the quality of
compression possible with the three network structures
described above.

The basic image used in this experiment is again a 64 x
64 greyscale image, this time the traditional ‘Lena’ image
is used. This has; the advantage of continuity with our
previous work, keeps neural network training time short as
the amount of data is small, and produces images which
need to be magnified allowing the effects on pixels to be
seen. The Lena image is quite small at full resolution:
and is magnified in subsequent diagrams.

285

The image is (as in our previous work) cut up into 16
non-overlapping patches. The patches are all sufficiently
different as to require the network to leam a suitably general
compression function. Again we point out that if the overall
obiective at this stage was to maximise the degree of

respectively.
The following nine images are similarly produced, using

the same initial starting weights as the standard back-
propagation example.

-
compression, there are a number of optimisations we would
make, such as to use overlapping patches and so on.

The overall objective is to determine the relationship to
the degree and kind of constraints on the weights which
will produce good results in the image compression task.

VII. RESULTS: STANDARD BACK-PROP.

The first nine results are provided below. The network is
initially trained for 2,000 epochs, then the distinctiveness
of the hidden units is used to select a unit to prune, that
unit is removed leaving all other weights unchanged, and
the network retrained for 600 epochs. These values were
selected based on experience, and on some initial
experiments with this task.

IMAGES: SHARED WEIGHTS

I

1

1
I

Fig. 4. Image sequence using shared weights

The first image is of slightly lower quality than the
initial standard back-propagation image. This is not
surprising in that the number of weights are the same, but
the number of free parameters is halved, which we have
explained above can be interpreted as constraints on the
function that the network implements.

This function implemented by the shared weights
network is more robust, which we can see from the
sequence because the degradation in image quality happens
more slowly. Thus, we start with a lower quality image,
but the final image is better than the standard back-
propagation version.

IX. RESULTS: BIDIR. NETWORKS
Fig. 3. Image scqucncc using back-propagration

These nine images are again produced starting from the
same initial weights, and the same initial training and
retraining regime as in the previous examples.

The first image is ofexcellent quality, this decreases Over
the following images, as more and more hidden units are
removed. The last image is of sufficiently low quality that
the image is scarcely recognisable, the last row is really
provided to illustrate how image quality degrades. This
degradation in quality happens sooner than in our previous
experiment, which may be due to the less sparse population
of the greyscale continuum of values in this case.

We note that cutting images into non-overlapping
patches allows ease of exposition but introduces extra edge
effects on the output which necessarily impacts on image
quality, and does not reflect on the degree of compression
available using neural techniques. Hence we will not
comment on the degree of compression we can achieve.

VIII. RESULTS: SHARED WEIGHTS

The network is again trained using the 2,000 I 600
epochs for initial training and retraining after pruning

Fig 5 . Image scqucncc using bidircctional nct..

286

The first image is of even lower quality than when we
were using the shared weights method. This was a surprise
to us, in that we expected that the bidirect:onal method
results would lie between the standard and the shared
weight method results.

This expectation was because the bidirecri onal method
imposes a constraint on the function the neural network
implements, but this is weaker than the (constraint in
weight sharing. We have called this a “functional
symmetry” constraint in the bidirectional method, as
opposed to the “weight symmetry” constraint in the weight
sharing method. The degradation of image quality as we
sequentially prune units is very similar to the standard
back-propagation method.

X. COMPARISON OF RESULTS

In the above sections, we have qualitatively compared
the different image quality produced by each technique. We
now examine the total sum of squares (tss) error measure
we have used in our previous experiments.

0 Shared weights Q ...I..

0
I , Bidirectional I .

: ‘*, :
* * 1

, . . . a a
O 4 s -

U-

g -
rj 2 30-

15 -

0 -
1

1 I I I I

1 2 3 4 5 6 1 8 9

Fig. 6. Comparison of 3 techniques using TSS

The results are in some accord with our qualitative
observations, in that the image quality degrades, relatively
smoothly, and that the shared weights method starts with a
lower quality image and ends up with a similar or slightly
better image than the standard back-propagation method.

The oscillation of the bidirectional method is also
apparent in the images. This is misleading, however, as the
tss value for the fifth image is noticeably higher than for the
fourth, and yet the quality of the fifth image is better than
that of the fourth.

Hence we must remain careful in any assumption we
might make that the total sum of squares values are actually
an image quality measure. To further illustrale this point,
we have chosen from the values in the above graph the thee
most similar results, which are for the sixth images.

These are rcpeat ed below for ease of comparison:

!
f
I I
back-prop. shared wts bidir. train. bidir. stoch.

Fig. 7. Sixth images by technique

The first three images are similar, with the bidirectional
training sixth image appearing slightly better, though this
may be due to the artefactual smile Lena has acquired! In
our previous work, wle had found that the angle of the
hidden unit which we removed was a better indicator of the
image quality.

Shared weights

Bidirectional

....... Q ,.......

% - .-
C

c.
C

2
.-

so
3

GJ
a0
0

-
..
E

30 .-
C

5

1 2 3 4 5 6 7 8 9

Fig. 8. Comparison of 3 techniques using Angles

The above graph shows that these values can not be said
to clearly relate to the image quality process. This may be
because the network was not trained for a sufficiently long
period. It is also interesting to note that the bidirectional
method showed very little change in the minimum angle
(which is the one pruned) over the entire process.

XI. CONCLUSION

The advantages for generalisation for both shared weights
and bidirectional training probably derive from the
reduction in free parameters, and the faster training of the
input to hidden weights. That is, for both techniques these
weights receive stronger feedback than under the standard
back-propagation topology I training algorithm.

XII. ACKNOWLEDGEMENT

The support from the Philippines Department of Science
and Technology is grate:fully acknowledged.

287

XIII. REFERENCES

G. CottreI1, P. Munro and D. Zipser, “Learning
internal representations of gray scale images.”
Proccedings 9th Annual Cognitive Science Society
Conference, Seattle, pp. x-y, 1987.
M.K. Fleming and W. Cottrell, “Categorisation of
Faces Using Unsupervised Feature Extraction,”
Proceedings International Joint Conference on Neural
Networks, vol. 2, pp. 65-70, 1990.
A. Namphol, M. Arozullah and S. Chin “Higher
Order Data Compression with Neural Networks,”
Proceedings International Joint Conference on Neural
Networks, vol. 1, pp. 55-59, Seattle, 1991.
T.D. Gedeon and D. Harris “Finding Small
Compression Layers,” Proceedings D I C T A ,
Melboume, 1991.
T.D. Gedeon and D. Harris “Progressive Image
Compression,” Proceedings International Joint
Conference on Neural Networks, vol. 4, pp. 403-407,
Baltimore, 1992.
T.D. Gedeon “Indicators of Hidden Neuron
Functionality: Static versus Dynamic Assessment,”
Proceedings International Conference on Neurai
Networks and Expert Systems, pp. 26-29, 1995.
T.D. Gedeon “Indicators of Hidden Neuron
Functionality: the Weight Matrix versus Neuron
Behaviour,” Australasian Journal of Intelligent
Information Processing Systems, vol. 3, no. 2, pp. 1-
9, 1996.
A.F. Nejad and T.D. Gedeon “BiDirectional MLP
Neural Networks,” Proceedings International
Symposium on Artificial Neural Networks; pp. 308-
3 13, Taiwan, 1994.
A.F. Nejad and T.D. Gedeon “Bidirectional Neural
Networks Reduce Generalisation Error,” in Mira, J and
Sandoval, F, (eds.), From Natural to Artf icial
Neural Computation, pp. 543-550, Springer Verlag,
Lecture Notes in Computer Science, vol. 930, 1995.

[IO] J. Sietsma and R.F. Dow “Neural net pruning - why
and how,” Proceedings International Joint Conference
on Neural Networks, vol. 1, pp. 325-333, 1988.

[11] M.C. Mozer and P. Smolenski “Using relevance to
reduce network size automatically,” Connect ion
Science, vol. 1, pp. 3-16, 1989.

[12] B.E. Segee, BE, & Carter, MJ, “Fault Tolerance of
Pruned Mult i 1 ay er Networks , ” Proceedings
International Joint Conference on Neural Networks,
vol. 2, pp. 447-452, Seattle, 1991.

[I31 D. Sanger “Contribution analysis: a technique for
assigning responsibilities to hidden units in
connectionist networks,” Connection Science, vol. 1,

[14] E.D. Karnin “A simple procedure for pruning
back-propagation trained neural networks,” IEEE
Transactions on Neural Networks, vol. 1, pp.

[151 M. Hagiwara “Novel back propagation algorithm for
reduction of hidden units and acceleration of
convergence using artificial selection,” Proceedings
International Joint Conference on Neural Networks,

[16] T.D. Gedeon and D. Harris “Network Reduction
Techniques,” Proceedings International Corrference
on Neural Networks Methodologies and Applications,
vol. 1, pp. 119-126, San Diego, 1991.

[17] T.D. Gedeon and R.P. Good “Interactive modelling
of a neural network model of GDP,” Proceedings
International Conference on Modelling and
Simulation, pp. 355-360, Perth, 1993.

[l8] T.D. Gedeon and H. Turner “Extracting Contextual
if- then Rules from a Feedforward Neural Network,”
Proceedings Brazil-Japan Joint Symposium on Fuzzy
Systems, pp. 113-122, Manaus, 1994.

pp. 115-138, 1989.

239-242, 1990.

vol. 1. pp. 625-630, 1990.

288

