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Abstract - In this paper we consider connectionist 
compression schemes using auto-associative networks, and 
demonstrate the advantages gained by imposing two 
different constraints on the allowed network weights, and 
comparison with pruning of the unconstrained auto- 
associative network. 

I. INTRODUCTION 

Most applications of neural networks; for image 
compression have emphasised the degree of compression [ 1- 
31. In many applications the main consideration is the 
decompressed image quality [4]. We can guarantee a 
consistent level of functionality of units in the compression 
layer based on their distinctiveness, and can progressively 
reduce the size of the compression layer for the desired level 
of image quality [5]. 

Pruning of redundant or less important hidden neurons 
from the popular back-propagation trained neural networks 
is useful for a host of reasons. For pruning it is necessary to 
identify hidden neurons with similar functionality. We have 
used a pruning process based on the behaviour of the 
hidden neurons in an image processing application to 
produce a quality driven compression by elilminating the 
least different hidden neurons. It is also possible to use the 
computationally cheaper alternative using only the trained 
weight matrix of the neural networks at each stage of the 
compression process [6-71. 

In this paper we demonstrate the advantages for 
generalisation performance of constraining weights 
symmetrically using weight sharing, and by constraining 
functional symmetry by the use of enhanced back- 
propagation networks trained bidirectionally [8 -91. 

11. PRUNING 

The seminal work on pruning trained netwoirks [ IO]  uses 
the outputs of units in a two stage pruning process. In the 
first stage, units whose inputs are always close to zero are 
removed. The outputs of the other units are banded to 0 or 
1. The pattern of outputs are compared, and any that are 
duplicates or inverses by inspection are removed, and the 
network undergo further training to restore the solution. In 
the second stage of pruning, unit outputs are again 
inspected for redundancy with regards to the separation of 

classes within the presented pattern space. Also, entire 
layers are examined for the number of classes being coded, 
and compared with the inumber of classes needed at the next 
layer. The example giiven allows the entire layer to be 
removed. The resultinig overall network can be trained 
further to again retrievt: the solution, but can not learn it if 
restarted in this topology. 

Such pruning by inspection is quite difficult even on 
small examples, so clearly some automatable process 
would be ideal. A number of workers have made attempts 
in this direction, and have delineated various properties to 
determine which uniis can or should be eliminated. 
Properties such as relevance [ 1 1 - 121, contribution [ 131, 
sensitivity [ 141, badness [ 151, and distinctiveness [ 161 have 
been described in detail elsewhere. We will briefly describe 
distinctiveness here. 

The distinctiveness of hidden units is determined from 
the unit output activation vector over the pattern 
presentation set [16]. That is, for each hidden unit we 
construct a vector of the same dimensionality as the number 
of patterns in the training set, each component of the vector 
corresponding to the output activation of the unit. This 
vector represents the functionality of the hidden unit in 
(input) pattern space. In this model, vectors for clone units 
would be identical irrespective of the relative magnitudes of 
their outputs and be recognised. Units with short activation 
vectors in pattern space are recognised as insignificant and 
can be removed. 

Recognising similar pairs of vectors is by calculation of 
the angle between them in pattern space. As all activations 
are constrained to the: range 0 to 1, the vectors are 
normalised to 0.5, 0.5 to use the angular range of 0-180" 
rather than 0-90". Angular separations of up to about 15" 
are considered too similar and one of them is removed. The 
weight vector of the the unit which is removed is added to 
the weight vector of the unit which remains. With low 
angular separations as above, the averaging effect is 
insignificant and the mapping from weights to pattern space 
remains adequate in that the error measure is little worse 
subsequently. This produces a network with one fewer unit 
which requires little further training. 

A further category of undesirable units is also discovered 
and included in the distinctiveness analysis. Groups of 
three or more units whiclh together have no effect, or two or 
more units with a constant effect can be recognised. That is, 
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in the pattern space, the sum of their vectors is zero or 
constant. The discovery of such groups is done by a sorted 
Gaussian vector pivot on the cumulative rectangular matrix 
of pattern space vectors. Fortunately, such groups are not 
common in our experience, and this part of distinctiveness 
analysis was not used in this paper. 

111. IMAGE COMPRESSION PREVIOUS WORK 

A 64 by 64 reduced greyscale image was chosen for our 
method. The image was broken into 16 non-overlapping 16 
by 16 patches froming separate training pattems, so as to 
allow for generalisation to have clearly occurred - since 
there is little obvious similarity between the pieces, and 
particularly the large areas of white space around the edges 
of the image could be expected to interfere. This allowed a 
single image to be used, thus simplifying the discussion. 

The network architecture was a 256 input, x unit hidden 
layer, and 256 output network, each of the pixels in the 16 
by 16 parts of the image being a single input, and output. 
The number of bits per pixel were mapped onto the range 0 
to 1 as input, and outputs remapped to the gray scale. 

The significance of training an auto-associative network 
for image compression is that the hidden neurons learn a 
compressed representation for the input patterns. For 
transmission over a slow network connection, the neural 
network weights could be transmitted as a fixed initial cost, 
while subsequently the compressed representation formed 
by the hidden units could be transmitted using the 
activation values of the hidden units for the particular 
image. All neural compression is inherently lossy, hence 
interest in such work is largely for insights into image 
compression and into neural networks that can ensue. 

Fig. I .  Units vs. image quality, unit significance 

Fig. 1 shows the relationship between the number of 
hidden units and the total sum of squares error measure 
which can be taken as a rough indicator of the image 
quality. Initially there is little drop in quality as units are 
removed. Beyond a certain point each further unit removed 

produces a significant degradation in quality. Fig. 1 also 
shows the relationship between the number of hidden units 
and the smallest angle between hidden units. These values 
are all much higher than the standard 15" we use. It is 
interesting to note that the removal of the first few units in 
the vicinity of 60" does not cause a marked reduction in the 
error measure. Since we are removing significant units at 
each stage, the network will require retraining. After the 
removal of a unit, the network is retrained briefly. All such 
training uses stochastic (pattern) updating of the weights. 

IV. SHARED WEIGHT TOPOLOGY 

The topology of the shared weight auto-associative 
network appears the same as the standard feed-forward 
network, though the meaning of the weighted connections 
between units. The connection between input A and hidden 
unit B in Fig. 2 is the same weight as between hidden unit 
B and output C. That is, the number of free parameters is 
no longer the same as the number of weights. 

The simplest implementation of shared weights in a 
simulator is to back-propagate errors and update weights as 
in standard backpropagation without weight sharing, and 
then after the values of the A-B weight and B-C weight 
have diverged to average their values. This has the 
unfortunate effect of increasing the computation time 
required, but is much clearer conceptually than the 
altematives, and was the approach we followed. 

The significance of the weight sharing is that the space of 
possible network weight configurations is very much 
reduced or constrained. In a standard auto-associative 
network such as described in the previous section, the first 
layer of weights from the inputs to the hidden units can be 
seen as implementing a compression function on the input 
pattern. The second layer of weights from the hidden units 
to the outputs implement a decompression function on the 
compressed image. That is, the hidden unit activations are 
mapped to recreate an approximation of the original image. 
(It is only an approximation, because as indicated above, 
neural compression of the nature we do here is inherently 
lossy.) 

In a shared weight network, the constraining of input to 
hidden and hidden to output weights to be identical is to 
effectively require that the compression function be 
invertible. This has two consequences. Firstly, it may 
make finding a compression-decompression function harder 
for a particular case. Secondly, if an appropriate function can 
be found, we would expect it to perform better in general 
than a standard backpropagation network in that the inverse 
function is 'the' inverse function, rather than an 
approxiination of the inverse function. 

In a standard backpropagation network, the first layer of 
weights may implement a non-invertible compression 
function. Then, the second layer could only implement 
some approximation to the ideal decompression function 
which does not exist if the compression function was non- 
invertible. 
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V. BIDIRECTIONAL NEURAL NETWORKS 

To introduce bidirectional neural networks [SI, we must 
first restate the directionality implicit in the weights in 
feed-forward neural networks trained using error back- 
propagation. The weighted links in these networks are from 
inputs to hidden, towards the outputs only. (Altematively, 
we could view the weights as bidirectional, with different 
weights in both directions, with the weights in the reverse 
direction being all zeros.) Some (recurrent) models allow 
weighted links back to units closer to the inputs, however, 
the direction of flow on activation along the vveighted links 
is still maintained. Such recurrent connections can be 
modelled by more complex topologies with shared 
weights, which do not even require such connections to 
earlier parts of the network, by making the link implicit. 
As a philosophical comment, note that the errors are 
propagated backward through the structure though there are 
no visible structures for this flow of information to take 
place. 

Fig. 2. Bidir. topology showing input / output biases 

The practical motivation for the development of this 
bidirectional model was the recognition that is many 
situations using a neural network to form a mapping from 
inputs to outputs is only the first step in a wider process, 
where the intention is to ask questions such as “given 
these socio-economic indicators predict a certain GDP 
values, what modifications of the inputs will produce a 
higher GDP?” [ 171. 

Fig. 2 illustrates the topology of the network for a 
bidirectional neural network. The diagram de-emphasises 
the auto-associative nature of the topology in favour of 

illustrating the modific:ations required to alllow bidirectional 
training. 

The weights are all now bidirectional and have the same 
value in both directions. The hidden units are fine as they 
are, as we allow the bias weights to be used in both 
directions. The input neurons require a new set of bias 
weights for use only in the reverse direction. 

The network is trained using the error-back-propagation 
algorithm in one direction at a time. We start in the 
forward direction and train nonnally. That is, the training 
pattems are used so th,at the input values are applied to the 
input units, values propagated towards the output, and the 
target values are compared to the actual outputs and the 
differences used to mlodify the weights, with these errors 
being propagated backwards towards the inputs to 
potentially modify all the weights. The test patterns are 
used similarly, with the input values being applied to the 
input units, and the tairget values compared to the actual 
values, though without modifying the weights in the 
network. 

After some number of training events, the direction is 
reversed. The output neurons are used as inputs. That is, 
the same patterns from the training data set are used, but 
this time the ‘target’ values are applied to the ‘output’ 
units, and values propagated towards the ‘input’ units. The 
actual values produced by the ‘input’ units are compared to 
the desired values of .the inputs in the training pattern to 
derive an error value which is used to modify weights. This 
error is propagated backwards (in this case towards the 
‘output’ units) potentiailly modifying all the weights. 

The mapping in this; image compression experiment is 
clearly a one-to-one identity mapping. This allows us to 
avoid discussion of the different sizes of training sets that 
are ideal for each direction of training, as the input and 
output dimensions are the same. A simple implementation 
of bidirectional training for the auto-associative case is to 
regularly swap the w’eights connecting the input to the 
hidden units with the weights connecting the hidden to the 
output units. Many siinulators even provide zero valued 
place holders for input unit biases, which serve as a handy 
storage location for thle bias weights for the direction not 
being trained at thle time. Clearly we do not need to modify 
the training or test pattern data files, as the input and target 
values are identical in an auto-associative task. 

VI. EXPERIMENT DESCRIPTION 

This experiment is to compare the quality of 
compression possible with the three network structures 
described above. 

The basic image used in this experiment is again a 64 x 
64 greyscale image, this time the traditional ‘Lena’ image 
is used. This has; the advantage of continuity with our 
previous work, keeps neural network training time short as 
the amount of data is small, and produces images which 
need to be magnified allowing the effects on pixels to be 
seen. The Lena image is quite small at full resolution: 
and is magnified in subsequent diagrams. 
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The image is (as in our previous work) cut up into 16 
non-overlapping patches. The patches are all sufficiently 
different as to require the network to leam a suitably general 
compression function. Again we point out that if the overall 
obiective at this stage was to maximise the degree of 

respectively. 
The following nine images are similarly produced, using 

the same initial starting weights as the standard back- 
propagation example. 

- 
compression, there are a number of optimisations we would 
make, such as to use overlapping patches and so on. 

The overall objective is to determine the relationship to 
the degree and kind of constraints on the weights which 
will produce good results in the image compression task. 

VII. RESULTS: STANDARD BACK-PROP. 

The first nine results are provided below. The network is 
initially trained for 2,000 epochs, then the distinctiveness 
of the hidden units is used to select a unit to prune, that 
unit is removed leaving all other weights unchanged, and 
the network retrained for 600 epochs. These values were 
selected based on experience, and on some initial 
experiments with this task. 

IMAGES: SHARED WEIGHTS 

I 

1 

1 
I 

Fig. 4. Image sequence using shared weights 

The first image is of slightly lower quality than the 
initial standard back-propagation image. This is not 
surprising in that the number of weights are the same, but 
the number of free parameters is halved, which we have 
explained above can be interpreted as constraints on the 
function that the network implements. 

This function implemented by the shared weights 
network is more robust, which we can see from the 
sequence because the degradation in image quality happens 
more slowly. Thus, we start with a lower quality image, 
but the final image is better than the standard back- 
propagation version. 

IX. RESULTS: BIDIR. NETWORKS 
Fig. 3. Image scqucncc using back-propagration 

These nine images are again produced starting from the 
same initial weights, and the same initial training and 
retraining regime as in the previous examples. 

The first image is ofexcellent quality, this decreases Over 
the following images, as more and more hidden units are 
removed. The last image is of sufficiently low quality that 
the image is scarcely recognisable, the last row is really 
provided to illustrate how image quality degrades. This 
degradation in quality happens sooner than in our previous 
experiment, which may be due to the less sparse population 
of the greyscale continuum of values in this case. 

We note that cutting images into non-overlapping 
patches allows ease of exposition but introduces extra edge 
effects on the output which necessarily impacts on image 
quality, and does not reflect on the degree of compression 
available using neural techniques. Hence we will not 
comment on the degree of compression we can achieve. 

VIII. RESULTS: SHARED WEIGHTS 

The network is again trained using the 2,000 I 600 
epochs for initial training and retraining after pruning 

Fig 5 .  Image scqucncc using bidircctional nct.. 
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The first image is of even lower quality than when we 
were using the shared weights method. This was a surprise 
to us, in that we expected that the bidirect:onal method 
results would lie between the standard and the shared 
weight method results. 

This expectation was because the bidirecri onal method 
imposes a constraint on the function the neural network 
implements, but this is weaker than the (constraint in 
weight sharing. We have called this a “functional 
symmetry” constraint in the bidirectional method, as 
opposed to the “weight symmetry” constraint in the weight 
sharing method. The degradation of image quality as we 
sequentially prune units is very similar to the standard 
back-propagation method. 

X. COMPARISON OF RESULTS 

In the above sections, we have qualitatively compared 
the different image quality produced by each technique. We 
now examine the total sum of squares (tss) error measure 
we have used in our previous experiments. 

0 Shared weights ....... Q ...I.. 

0 
I ,  Bidirectional I .  

: ‘*, : 
* * 1  

, .  . .  a a 
O 4 s -  

U- 

g - 
rj 2 30-  

15 - 

0 -  
1 

1 I I I I 

1 2 3 4 5 6 1 8 9  

Fig. 6. Comparison of 3 techniques using TSS 

The results are in some accord with our qualitative 
observations, in that the image quality degrades, relatively 
smoothly, and that the shared weights method starts with a 
lower quality image and ends up with a similar or slightly 
better image than the standard back-propagation method. 

The oscillation of the bidirectional method is also 
apparent in the images. This is misleading, however, as the 
tss value for the fifth image is noticeably higher than for the 
fourth, and yet the quality of the fifth image is better than 
that of the fourth. 

Hence we must remain careful in any assumption we 
might make that the total sum of squares values are actually 
an image quality measure. To further illustrale this point, 
we have chosen from the values in the above graph the thee  
most similar results, which are for the sixth images. 

These are rcpeat ed below for ease of comparison: 

! 
f 
I I 
back-prop. shared wts bidir. train. bidir. stoch. 

Fig. 7. Sixth images by technique 

The first three images are similar, with the bidirectional 
training sixth image appearing slightly better, though this 
may be due to the artefactual smile Lena has acquired! In 
our previous work, wle had found that the angle of the 
hidden unit which we removed was a better indicator of the 
image quality. 
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Fig. 8. Comparison of 3 techniques using Angles 

The above graph shows that these values can not be said 
to clearly relate to the image quality process. This may be 
because the network was not trained for a sufficiently long 
period. It is also interesting to note that the bidirectional 
method showed very little change in the minimum angle 
(which is the one pruned) over the entire process. 

XI. CONCLUSION 

The advantages for generalisation for both shared weights 
and bidirectional training probably derive from the 
reduction in free parameters, and the faster training of the 
input to hidden weights. That is, for both techniques these 
weights receive stronger feedback than under the standard 
back-propagation topology I training algorithm. 
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